Answer:
- mean height is approximately 64.2
- standard deviation is approximately 3.4 inches
Explanation:
Since the distribution is approximately normal, we can use the empirical rule to estimate the mean and standard deviation.
According to the empirical rule:
Approximately 68% of the data falls within 1 standard deviation of the mean
Approximately 95% of the data falls within 2 standard deviations of the mean
Approximately 99.7% of the data falls within 3 standard deviations of the mean
From the information given in the problem, we know that:
10% of women are less than 60.8 inches tall
10% of women are more than 67.6 inches tall
So, we can estimate the mean height as the midpoint between 60.8 and 67.6:
mean = (60.8 + 67.6) / 2 = 64.2 inches
We also know that 80% of women are between 60.8 and 67.6 inches tall. Since this is approximately 1 standard deviation from the mean (on either side), we can estimate the standard deviation as:
standard deviation = (67.6 - 64.2) / 1 = 3.4 inches
Therefore, the mean height is approximately 64.2 inches and the standard deviation is approximately 3.4 inches.