Answer:
Explanation:
First, we need to find the z-scores for q1 and q3.
Q1:
Using the formula for z-score, we get:
z = (x - μ) / σ
where x is the IQ score we want to find the z-score for, μ is the mean IQ of the population, and σ is the standard deviation of the population.
For the first quartile (q1), we want to find the z-score such that 25% of the population has an IQ score below that value. From the standard normal distribution table, we find that the z-score corresponding to a cumulative area of 0.25 is -0.674.
So we have:
-0.674 = (x - 110) / 16
Solving for x, we get:
x = 99.8
Therefore, q1 is approximately 99.8.
Q3:
Similarly, for the third quartile (q3), we want to find the z-score such that 75% of the population has an IQ score below that value. From the standard normal distribution table, we find that the z-score corresponding to a cumulative area of 0.75 is 0.674.
So we have:
0.674 = (x - 110) / 16
Solving for x, we get:
x = 120.8
Therefore, q3 is approximately 120.8.