We can use the identity:
tan(A+B) = (tanA + tanB)/(1 - tanA*tanB)
Substitute the given values:
8 = (tan A + (1/57))/(1 - (1/57)*tan A)
Multiplying both sides by (1- (1/57)*tan A), we get:
8(1 - (1/57)*tan A) = tan A + (1/57)
Expanding and simplifying, we get:
8 - (8/57)*tan A = tan A + (1/57)
Bringing terms with tan A to one side, we get:
(8/57 + 1/57) = (9/57)*tan A
tan A = (9/57)*(58/8)
tan A = 9/4
Therefore, tan A = 2.25 (approx)