Answer:
a. To find f(-a), substitute -a for x in the given function:
f(-a) = 3 - 2(-a) = 3 + 2a
Therefore, f(-a) = 3 + 2a.
b. To find -f(a), evaluate f(a) and then multiply by -1:
f(a) = 3 - 2a
-f(a) = -(3 - 2a) = -3 + 2a
Therefore, -f(a) = -3 + 2a.
c. To find f(a + h), substitute a + h for x in the given function:
f(a + h) = 3 - 2(a + h) = 3 - 2a - 2h
Therefore, f(a + h) = 3 - 2a - 2h.
d. To find f(a) + f(h), evaluate f(a) and f(h), and then add them:
f(a) = 3 - 2a
f(h) = 3 - 2h
f(a) + f(h) = (3 - 2a) + (3 - 2h) = 6 - 2a - 2h
Therefore, f(a) + f(h) = 6 - 2a - 2h.
e. To find (f(a + h) - f(a))/h if h ≠ 0, substitute the expressions for f(a + h) and f(a) into the formula:
(f(a + h) - f(a))/h = ((3 - 2a - 2h) - (3 - 2a))/h = (-2h)/h = -2
Therefore, (f(a + h) - f(a))/h = -2 if h ≠ 0.