Answer:
(f + g)(x) = x^2 - 5x + 3.
(f - g)(x) = x^2 - 7x + 13
Step by step explanation:
To find (f + g)(x), we add the functions f(x) and g(x) together:
(f + g)(x) = f(x) + g(x) = (x^2 - 6x + 8) + (x - 5)
Combining like terms, we get:
(f + g)(x) = x^2 - 5x + 3
Therefore, (f + g)(x) = x^2 - 5x + 3.
To find (f - g)(x), we subtract the function g(x) from f(x):
(f - g)(x) = f(x) - g(x) = (x^2 - 6x + 8) - (x - 5)
Again, combining like terms, we get:
(f - g)(x) = x^2 - 7x + 13
Therefore, (f - g)(x) = x^2 - 7x + 13.