asked 203k views
4 votes
Write the general form of a second-order homogeneous linear differential equation with constant coefficients.

1 Answer

4 votes

Final answer:

The general form of a second-order homogeneous linear differential equation with constant coefficients is y'' + ay' + by = 0.

Step-by-step explanation:

A second-order homogeneous linear differential equation with constant coefficients has the general form:

y'' + ay' + by = 0

Where y'' represents the second derivative of the function y(x) with respect to x, a and b are constant coefficients. This equation represents a second-order polynomial equation with the highest power of the variable being 2, and it is homogeneous because all the terms are multiplied by the function y(x).

answered
User Meeeee
by
8.4k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.