Fill in the missing statement and reason of the proof below.
 Given: start overline, A, B, end overline, \cong, start overline, C, D, end overline 
 AB
 ≅ 
 CD
 and start overline, B, C, end overline, \cong, start overline, A, D, end overline, . 
 BC
 ≅ 
 AD
 .
 
 Prove: angle, B, A, D, \cong, angle, B, C, D∠BAD≅∠BCD.
 Step Statement Reason
 1 
 start overline, A, B, end overline, \cong, start overline, C, D, end overline 
 AB
 ≅ 
 CD
 
 start overline, B, C, end overline, \cong, start overline, A, D, end overline 
 BC
 ≅ 
 AD
 
 Given
 2 
 start overline, A, C, end overline, \cong, start overline, A, C, end overline 
 AC
 ≅ 
 AC
 
 Reflexive Property
 3 
 triangle, A, B, C, \cong, triangle, C, D, A△ABC≅△CDA
 SSS
 4 
 5 
 angle, B, C, A, \cong, angle, C, A, D∠BCA≅∠CAD
 Corresponding Parts of Congruent Triangles are Congruent (CPCTC)
 6 
 angle, B, A, D, \cong, angle, B, C, D∠BAD≅∠BCD
 Congruent angles added to congruent angles form congruent angles
 A
 B
 C
 D