The limit of the given piecewise function f(x) as x approaches 1 does not exist (DNE) because the left-hand limit is
, and the right-hand limit is infinity, indicating a discontinuity at x = 1. The correct answer is (d) DNE.
To find
for the piecewise function f(x), we need to evaluate the left-hand limit (
) and the right-hand limit (
).
For x < 1, the expression is

For
, the expression is

Let's calculate the left-hand limit:
![\[\lim_{{x \to 1^-}} f(x) = \lim_{{x \to 1^-}} \frac{{x^3 - 1}}{{x^2 - 1}}\]](https://img.qammunity.org/2024/formulas/mathematics/college/exs5m30qyxuj0f9xii9iix1z0btf5j4pfs.png)
To evaluate this limit, we can factor the numerator and denominator:
![\[= \lim_{{x \to 1^-}} \frac{{(x - 1)(x^2 + x + 1)}}{{(x - 1)(x + 1)}}\]](https://img.qammunity.org/2024/formulas/mathematics/college/2d0dbxpdg0xy8kfrmqn4zswtmuxz9vufcq.png)
Now, cancel out the common factor (x - 1):
![\[= \lim_{{x \to 1^-}} \frac{{x^2 + x + 1}}{{x + 1}}\]](https://img.qammunity.org/2024/formulas/mathematics/college/3ozyuuwswsegvg3whk2eyl2h69rmoxm70m.png)
Plugging in x = 1, we get

Now, let's calculate the right-hand limit:
![\[\lim_{{x \to 1^+}} f(x) = \lim_{{x \to 1^+}} \frac{3}{{x - 1}}\]](https://img.qammunity.org/2024/formulas/mathematics/college/lv9a3483mvhw6s4ks1g0oh4exiax9c770c.png)
Plugging in x = 1, we get
(because the denominator approaches zero from the positive side).
Since the left-hand limit and right-hand limit do not match,
does not exist (DNE). Therefore, the correct answer is (d) DNE.