Final answer:
Solving the system of linear equations given, we found the ordered pair (-6, 3) as the solution by substituting the first equation into the second, simplifying, and then solving for x and y.
Step-by-step explanation:
To solve the system of equations y = -2x - 9 and 2x + 3y = -3, we can use substitution or elimination. Here, substitution is straightforward because the first equation explicitly defines y in terms of x.
 
By substituting the first equation into the second, we get:
 2x + 3(-2x - 9) = -3
 2x - 6x - 27 = -3
 -4x - 27 = -3
 
Now, we solve for x:
 -4x = -3 + 27
 -4x = 24
 x = -6
 
Substitute x back into the first equation to solve for y:
 y = -2(-6) - 9
 y = 12 - 9
 y = 3
 
The solution to the system of equations is the ordered pair (-6, 3).