asked 176k views
1 vote
The magnitude and direction of vectors t, u, and v are shown in the table.

Vector Magnitude Direction
t 5 250°
u 6 60°
v 12 330°

What is the direction of t + u + v? Round to the nearest degree.
335°
305°
155°
213°

2 Answers

7 votes

Final answer:

The direction of the sum of vectors t, u, and v can be found by calculating the horizontal and vertical components of each vector, summing these components, and then using the arctangent function to find the direction of the resultant vector.

Step-by-step explanation:

To find the direction of the sum of the vectors t, u, and v, we first need to calculate the horizontal (x) and vertical (y) components of each vector. Then we add up all the x-components and y-components to find the components of the resultant vector. Finally, we can determine the direction of the resultant vector using trigonometry.

For vector t with magnitude 5 and direction 250°, the components are:



For vector u with magnitude 6 and direction 60°, the components are:



For vector v with magnitude 12 and direction 330°, the components are:


  • vx = 12 cos(330°)

  • vy = 12 sin(330°)

Adding the components together, we get:


  • Rx = ℓx + ux + vx

  • Ry = ℓy + uy + vy

The direction θ of the resultant vector is given by θ = atan(Ry/Rx). After calculating and finding the resultant direction, round the result to the nearest degree to get your answer.

answered
User Arve
by
8.3k points
3 votes

Answer:

335°

Step-by-step explanation:

I took the test and got it right :)

answered
User Kaung Myat Lwin
by
7.7k points

Related questions

asked Aug 17, 2024 31.6k views
Howlger asked Aug 17, 2024
by Howlger
8.1k points
1 answer
1 vote
31.6k views
1 answer
4 votes
94.3k views
2 answers
1 vote
6.6k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.