asked 178k views
3 votes
Can someone please help me?

Verify each trigonometric equation by substituting identities to match the right hand side of the equation to the left hand side of the equation.

A. (sin x)(tan x cos x - cot x cos x) = 1 - 2 cos2x

B. 1 + sec2x sin2x = sec2x

C. [(sin(x))/(1-cos(x))]+[(sin(x))/(1+cos(x))]=2csc(x)

D. - tan2x + sec2x = 1

2 Answers

6 votes

Answer:

a ) sin x ( \frac{sinx}{cosx}*cosx- \frac{cosx}{sinx}+*cos x)= \\ sinx(sinx- \frac{cos^{2} x}{sin^{2} x})=
sin^{2}x-cos^{2} x=1-cos^{2}x-cos^{2} x= \\ 1-2cos^{2}x

b ) 1 + \frac{1}{cos^{2} x} *sin^{2} x=1+ \frac{sin^{2} x}{cos^{2} x} = \\ \frac{cos {2} x+sin x^{2} x}{cos^{2} x} = \frac{1}{cos^{2} x} =sec^{2} x

c) \frac{sinx}{1-cosx} + \frac{sinx}{1+cosx}= \frac{sin x ( 1+cosx)+sinx(1-cosx)}{1-cos^{2} x} = \\ \frac{sinx+sinxcosx+sinx-sinxcosxx}{1-cos^{2}x }= \\ \frac{2sinx}{sin^{2} x} = \frac{2}{sinx}=2 csc x

d) -tan ^{2}x+sec ^{2}x=- \frac{sin ^{2} x}{cos ^{2} x} + \frac{1}{cos^{2} x} = \\ \frac{1-sin^{2x} }{cos ^{2}x }= \frac{cos^{2} x}{cos^{2}x } =1

Explanation:

answered
User PMunch
by
7.7k points
3 votes
a )
sin x ( (sinx)/(cosx)*cosx- (cosx)/(sinx)+*cos x)= \\ sinx(sinx- (cos^(2) x)/(sin^(2) x))= sin^(2)x-cos^(2) x=1-cos^(2)x-cos^(2) x= \\ 1-2cos^(2)x
b )
1 + (1)/(cos^(2) x) *sin^(2) x=1+ (sin^(2) x)/(cos^(2) x) = \\ \frac{cos {2} x+sin x^(2) x}{cos^(2) x} = (1)/(cos^(2) x) =sec^(2) x
c)
(sinx)/(1-cosx) + (sinx)/(1+cosx)= (sin x ( 1+cosx)+sinx(1-cosx))/(1-cos^(2) x) = \\ (sinx+sinxcosx+sinx-sinxcosxx)/(1-cos^(2)x )= \\ (2sinx)/(sin^(2) x) = (2)/(sinx)=2 csc x
d)
-tan ^(2)x+sec ^(2)x=- (sin ^(2) x)/(cos ^(2) x) + (1)/(cos^(2) x) = \\ (1-sin^(2x) )/(cos ^(2)x )= (cos^(2) x)/(cos^(2)x ) =1
answered
User Vimfluencer
by
7.9k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.