asked 92.8k views
0 votes
I know the answers to these questions, I just can't seem to figure out how to find the answers. I'm not too good at math...

Simplify the radical exprssion

√(14q) * 2 √(4q)
Answer is
4q √(14)
Simplify the radical expression (There's supposed to be a big suare root sign over the whole fraction)

( √(63x^15y^9) )/(7xy^11) (^15 and ^11)
Answer is
(3x^7)/(y)
Simplify the radical expression

2 √(6) + 3 √(96)
Answer is
14 √(6)

1 Answer

2 votes

\bf √(14q)\cdot 2√(4q)\implies √(14q)\cdot 2√(2^2q)\implies √(14q)\cdot 2(2)√(q) \\\\\\ √(14q)\cdot 4√(q) \implies 4√(14q)\cdot √(q)\implies 4√(14q\cdot q)\implies 4√(14q^2) \\\\\\ 4q√(14)

now, for the next one, bear in mind that, if you move a "factor" from the bottom to the top, the exponent changes sign, and if you move it from the top to the bottom, also changes sign, so, let's see,


\bf \left.\qquad \qquad \right.\textit{negative exponents}\\\\ a^{-{ n}} \implies \cfrac{1}{a^( n)} \qquad \qquad \cfrac{1}{a^( n)}\implies a^{-{ n}} \qquad \qquad a^{{{ n}}}\implies \cfrac{1}{a^{-{{ n}}}}\\\\ -------------------------------\\\\ \sqrt{\cfrac{63x^(15)y^9}{7xy^(11)}}\implies \sqrt{\cfrac{63}{7}\cdot \cfrac{x^(15)y^9}{xy^(11)}}\implies \sqrt{ \cfrac{9x^(15)y^9}{xy^(11)}}\implies \sqrt{ \cfrac{9x^(15)x^(-1)}{y^(11)y^(-9)}}


\bf \sqrt{ \cfrac{9x^(15-1)}{y^(11-9)}}\implies \sqrt{\cfrac{9x^(14)}{y^2}}\implies \sqrt{\cfrac{9x^(7\cdot 2)}{y^2}}\implies \sqrt{\cfrac{3^2(x^7)^2}{y^2}}\implies \cfrac{3x^7}{y}\\\\ -------------------------------


\bf 2√(6)+3√(96)\qquad \begin{cases} 96=2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 3\\ \qquad 2^2\cdot 2^2\cdot 2\cdot 3\\ \qquad (2\cdot 2)^2\cdot 2\cdot 3\\ \qquad 4^2\cdot 6 \end{cases}\implies 2√(6)+3√(4^2\cdot 6) \\\\\\ 2√(6)+3(4)√(6)\implies 2√(6)+12√(6)\implies 14√(6)
answered
User Primm
by
8.4k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.