asked 63.7k views
4 votes
Let v1 = (2, -6) and v2 = (-4, 7). Compute the unit vectors in the direction of |v1| and |v2|

2 Answers

6 votes

\bf \textit{unit vector} \\\\ \cfrac{\ \textless \ a,b\ \textgreater \ }\implies \cfrac{\ \textless \ a,b\ \textgreater \ }{√(a^2+b^2)}\implies \cfrac{a}{√(a^2+b^2)}\ ,\ \cfrac{b}{√(a^2+b^2)}\\\\ -------------------------------\\\\ \cfrac{\ \textless \ 2,-6\ \textgreater \ }{√((2)^2+(-6)^2)}\implies \cfrac{2,-6}{√(40)}\implies \cfrac{2,6}{2√(10)}\implies \cfrac{2}{2√(10)}\ ,\ \cfrac{-6}{2√(10)} \\\\\\ \boxed{\cfrac{1}{√(10)}\ ,\ \cfrac{-3}{√(10)}}


\bf -------------------------------\\\\ \cfrac{\ \textless \ -4,7\ \textgreater \ }{√((-4)^2+(7)^2)}\implies \cfrac{-4,7}{√(65)}\implies \boxed{\cfrac{-4}{√(65)}\ ,\ \cfrac{7}{√(65)}}
answered
User Simaglei
by
8.6k points
2 votes

Answer:

Here, given vectors,


v_1=(2, -6)


\implies \overrightarrow{v_1}=2i-6j

Thus, the unit vector would be,


\hat{v_1}=\frac{\overrightarrow{v_1}}{|\overrightarrow{v_1}|}


=(2i-6j)/(√(2^2+6^2))


=(2i-6j)/(√(4+36))


=(2i-6j)/(√(40))


=((2)/(√(40)), -(6)/(√(40)))

Now,
v_2=(-4, 7)


\implies \overrightarrow{v_2}=-4i+7j

Thus, the unit vector would be,


\hat{v_2}=\frac{\overrightarrow{v_2}}{|\overrightarrow{v_2}|}


=(-4i+7j)/(√(4^2+7^2))


=(-4i+7j)/(√(16+49))


=(-4i+7j)/(√(65))


=(-(4)/(√(65)), (7)/(√(65)))

answered
User Birkett
by
8.2k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.