asked 179k views
0 votes
A rectangle has an area of 20 ft.² in a similar rectangle has an area of 180 ft.² what is the ratio of areas of the similar

1 Answer

4 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{cccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}\\\\ -----------------------------\\\\


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s^2}{s^2}=\cfrac{20}{180}\implies \left( \cfrac{s}{s} \right)^2=\cfrac{20}{180}\implies \cfrac{s}{s}=\sqrt{\cfrac{20}{180}} \\\\\\ \cfrac{s}{s}=\cfrac{√(20)}{√(180)}\implies \cfrac{s}{s}=\cfrac{2√(5)}{6√(5)}\implies \cfrac{s}{s}=\cfrac{2}{6}\implies \cfrac{s}{s}=\cfrac{1}{3}
answered
User Canttouchit
by
8.3k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.