asked 73.1k views
0 votes
Simplify leaving your answer with positive exponents.

Simplify leaving your answer with positive exponents.-example-1
asked
User Navgeet
by
8.0k points

1 Answer

2 votes

\bf \left( \cfrac{5m^{(4)/(3)}}{n^{(2)/(3)}} \right)^{-(2)/(3)}\left(\cfrac{m^4}{8n^5} \right)^{-(4)/(3)}\implies \left( \cfrac{n^{(2)/(3)}}{5m^{(4)/(3)}} \right)^{(2)/(3)}\left(\cfrac{8n^5}{m^4} \right)^{(4)/(3)}\impliedby \begin{array}{llll} \textit{and now we}\\ \textit{distribute}\\ \textit{the exponent} \end{array}


\bf \left( \cfrac{n^{(2)/(3)\cdot (2)/(3)}}{5^{(2)/(3)}m^{(4)/(3)\cdot (2)/(3)}} \right)\left( \cfrac{8^{(4)/(3)}n^{5\cdot (4)/(3)}}{m^{4\cdot (4)/(3)}} \right)\implies \cfrac{n^{(4)/(9)}}{5^{(2)/(3)}m^{(8)/(9)}}\cdot \cfrac{8^{(4)/(3)}n^{(20)/(3)}}{m^{(16)/(3)}}\implies \cfrac{8^{(4)/(3)}n^{(4)/(9)+(20)/(3)}}{5^{(2)/(3)}m^{(8)/(9)+(16)/(3)}}


\bf \cfrac{8^{(4)/(3)}n^{(4+60)/(9)}}{5^{(2)/(3)}m^{(8+48)/(9)}}\implies \cfrac{8^{(4)/(3)}n^{(64)/(9)}}{5^{(2)/(3)}m^{(56)/(9)}}
answered
User Anomaaly
by
8.2k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.