asked 66.1k views
3 votes
Quadrilateral ABCD is located at A(−2, 2), B(−2, 4), C(2, 4), and D(2, 2). The quadrilateral is then transformed using the rule (x − 2, y + 8) to form the image A'B'C'D'. What are the new coordinates of A', B', C', and D'? Describe what characteristics you would find if the corresponding vertices were connected with line segments.

asked
User Luksan
by
8.3k points

2 Answers

3 votes

Answer:


Explanation:

it also made the thing look like a rectangular prism

answered
User Bebosh
by
8.4k points
3 votes

Given vertices of the Quadrilateral ABCD :

A(−2, 2),

B(−2, 4),

C(2, 4), and

D(2, 2).

The quadrilateral is then transformed using the rule (x − 2, y + 8).

Let us find the coordinate A', B', C', and D' by rule (x − 2, y + 8).

A(−2, 2) ---> (-2-2 , 2+8) = (-4, 10)

B(−2, 4) ---> (-2-2, 4+8) = (-4, 12)

C(2, 4), ---> ( 2-2, 4+8) = (0, 12)

D(2, 2) ---> (2-2, 2+8) = (0, 10).

So, the coordinates of A', B', C', and D' are

A'(-4, 10), B'(-4, 12), C'(0, 12), and D'(0, 10).

For the new coordinates we get we can say that each of the coordinate A', B', C', and D' moved 2 unit left and 8 units up.


answered
User MrMobster
by
8.1k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.