asked 196k views
3 votes
What is the equation of the quadratic graph with a focus of (5, 6) and a directrix of y = 2? f(x) = one eighth (x + 5)2 + 4 f(x) = −one eighth (x − 5)2 + 4 f(x) = one eighth (x − 5)2 + 4 f(x) = one eighth (x + 5)2 − 4

2 Answers

3 votes
In this problem, given the focus at (3, 1) and directrix at y = 5, then it is implied that the parabola is facing upwards. The vertex hence is at the middle of the focus and the directrix, hence at (3, 3). The general formula of the parabola is y-k = 4a ( x-h)^2. Substituting, y - 3 = 1/8 *(x-3)^2.

Answer is A
answered
User Demigod
by
7.9k points
3 votes

Answer:


y=(1)/(8) (x-5)^2 + 4

Explanation:

the equation of the quadratic graph with a focus of (5, 6) and a directrix of y = 2

General equation of a parabola in vertex form is


y=a(x-h)^2 + k , where (h,k) is the vertex

The distance between focus and directrix is 2p

focus of (5, 6) and a directrix of y = 2

distance is 4

2p = 4 so p = 2

Vertex is the midpoint of focus and directrix that is (5,4)

h= 5 and k= 4

Now find out 'a' , a=
(1)/(4p)

a=
(1)/(y4(2)) =(1)/(8)


y=(1)/(8) (x-5)^2 + 4

answered
User MPaulo
by
7.0k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.