asked 215k views
5 votes
The lengths of two sides of a triangle are 12 ft and 13 ft. find the range of possible lengths for the third side

asked
User Tokism
by
8.2k points

2 Answers

5 votes

Final answer:

The range of possible lengths for the third side of the triangle is 1 ft to 25 ft.

Step-by-step explanation:

To find the range of possible lengths for the third side of a triangle when the lengths of two sides are given, we can use the triangle inequality theorem. According to this theorem, the sum of the lengths of any two sides of a triangle must be greater than the length of the third side. So, in this case, we have two sides with lengths 12 ft and 13 ft. To find the range of possible lengths for the third side, we need to find the minimum and maximum values.

To find the minimum value, we subtract the length of the given side with the greatest length from the length of the given side with the smallest length. So, the minimum possible length for the third side is 13 - 12 = 1 ft.

To find the maximum value, we add the lengths of the two given sides. So, the maximum possible length for the third side is 12 + 13 = 25 ft. Therefore, the range of possible lengths for the third side is 1 ft to 25 ft.

answered
User MichaelEvanchik
by
8.2k points
5 votes
Let x be the length of third side.
12 + x > 13
x > 1-------------(1)
13 + x > 12
x > -1 ------------(2)
by combining (1) and (2)
we have x > -1

answered
User Amcdrmtt
by
7.3k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.