asked 50.2k views
0 votes
What is the solution to the trigonometric inequality 2sin(x)+3> sin^2(x)

1 Answer

14 votes

Answer:


-(\pi)/(2)+2n\pi<x<(3\pi)/(2)+2n\pi

Step-by-step explanation:

Given:


2\sin(x)+3> \sin^2(x)

To Find:

The Solution of the above inequality

Step-by-step explanation:


2\sin(x)+3> \sin^2(x).......(i)\\\text{let} \sin (x) = u\\\Rightarrow 2u+3> u^2\\\Rightarrow u^2-2u-3<0\\\Rightarrow u^2-3u+u-3<0\\\Rightarrow u(u-3)+1(u-3)<0\\\Rightarrow (u+1)(u-3)<0\\\Rightarrow -1<u<3\\\text{and since} \sin(x) = u\\\Rightarrow -1<\sin(x)<3


\text{as if} \;a<u<b \Rightarrow a<u \;\text{and}\; u<b\\\Rightarrow -1<\sin(x) \; \text{and} \; \sin(x) <3\\-1<\sin(x) \; : -(\pi)/(2)+2n\pi<x<(3\pi)/(2)+2n\pi\\\text{and}\; \sin(x) <3 : \text{true for all } x \in R\\\text{Now, combining the intervals we get}\\-(\pi)/(2)+2n\pi<x<(3\pi)/(2)+2n\pi \; \text{and} \; \text{true for all } x \in R\\-(\pi)/(2)+2n\pi<x<(3\pi)/(2)+2n\pi.

answered
User Trez
by
8.5k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.