asked 162k views
4 votes
A line segment has endpoints at (4, –6) and (0, 2). What is the slope of the given line segment? What is the midpoint of the given line segment? What is the slope of the perpendicular bisector of the given line segment? What is the equation, in slope-intercept form, of the perpendicular bisector?

2 Answers

4 votes

Answer:

-2

(2,-2)

1/2

y=(1/2)x-3

Explanation:

It’s correct on edge.

answered
User Tobuslieven
by
8.9k points
4 votes

slope = - 2, midpoint = (2, - 2 )

the slope m is calculated using the ' gradient formula '

m = ( y₂ - y₁ ) / (x₂ - x₁ )

with (x₁, y₁ ) = (4, - 6 ) and (x₂, y₂ ) = (0, 2 )

m =
(2+6)/(0-4) =
(8)/(-4) = - 2

calculate midpoint using midpoint formula

{
(1)/(2) (4 + 0 ),
(1)/(2) (- 6 + 2 )] = (2, - 2 )

gradient of perpendicular bisector = -
(1)/(-2) =
(1)/(2)

equation in slope-intercept form is

y = mx + c ( m is slope and c the y-intercept )

partial equation is y =
(1)/(2) x + c

to find c substitute ( 2, - 2) into the partial equation

- 2 = 1 + c ⇒ c = - 3

y =
(1)/(2) x - 3 in slope-intercept form



answered
User Ad Absurdum
by
7.6k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.