1) Answer is: the ionic compound in the solution b is K₂CrO₄ (potassium chromate). 
Ionic compound in solution b has two potassiums (oxidation number +1), one chromium (oxidation number +6) and four oxygens. Oxidation number of oxygen is -2 and compound has neutral charge: 
2 · (+1) + 6 + x · (-2) = 0. 
x = 4; number of oxygen atoms. 
2) Answer is: the ionic compound in solution a is AgNO₃ (silver nitrate). 
ω(N) = 8.246% ÷ 100%. 
ω(N) = 0.08246; mass percentage of nitrogen. 
M(MNO₃) = M(N) ÷ ω(N). 
M(MNO₃) = 14 g/mol ÷ 0.08246. 
M(MNO₃) = 169.8 g/mol; molar mass of metal nitrate. 
M(M) = M(MNO₃) - M(N) - 3 · M(O). 
M(M) = 169.8 g/mol - 14 g/mol - 3 · 16 g/mol. 
M(M) = 107.8 g/mol; atomic mass of metal, this metal is silver (Ag). 
3) Balanced chemical reaction: 
2AgNO₃(aq) + K₂CrO₄(aq) → Ag₂CrO₄(s) + 2KNO₃(aq). 
Ionic reaction: 
2Ag⁺(aq) + 2NO₃(aq) + 2K⁺(aq) + CrO₄²⁻(aq) → Ag₂CrO₄(s) + 2K⁺(aq) + 2NO₃⁻(aq). 
Net ionic reaction: 2Ag⁺(aq) + CrO₄²⁻(aq) → Ag₂CrO₄(s). 
Answer is: the blood-red precipitate is silver chromate (Ag₂CrO₄). 
4) m(Ag₂CrO₄) = 331.8 g; mass of solid silver chromate. 
n(Ag₂CrO₄) = m(Ag₂CrO₄) ÷ M(Ag₂CrO₄). 
n(Ag₂CrO₄) = 331.8 g ÷ 331.8 g/mol. 
n(Ag₂CrO₄) = 1 mol; amount of silver chromate. 
From balanced chemical reaction: n(Ag₂CrO₄) : n(AgNO₃) = 1 : 2. 
n(AgNO₃) = 2 · 1 mol. 
n(AgNO₃) = 2 mol. 
m(AgNO₃) = n(AgNO₃) · M(AgNO₃). 
m(AgNO₃) = 2 mol · 169.8 g/mol. 
m(AgNO₃) = 339.6 g; mass of silver nitrate. 
m(AgNO₃) = m(K₂CrO₄). 
m(K₂CrO₄) = 339.6 g; mass of potassium chromate. 
n(K₂CrO₄) = m(K₂CrO₄) ÷ M(K₂CrO₄). 
n(K₂CrO₄) = 339.6 g ÷ 194.2 g/mol. 
n(K₂CrO₄) = 1.75 mol; amount of potassium chromate. 
5) Chemical reaction of dissociation of silver nitrate in water: 
AgNO₃(aq) → Ag⁺(aq) + NO₃⁻(aq). 
V(solution a) = 500 mL ÷ 1000 mL/L. 
V(solution a) = 0.5 L; volume of solution a. 
c(AgNO₃) = n(AgNO₃) ÷ V(solution a). 
c(AgNO₃) = 2 mol ÷ 0.5 L. 
c(AgNO₃) = 4 mol/L = 4 M. 
From dissociation of silver nitrate: c(AgNO₃) = c(Ag⁺) = c(NO₃⁻). 
c(Ag⁺) = 4 M; the concentration of silver ions in the original solution a. 
c(NO₃⁻) = 4 M; the concentration of silver ions in the original solution a. 
6) Chemical reaction of dissociation of potssium chromate in water: 
K₂CrO₄(aq) → 2K⁺(aq) + CrO₄²⁻(aq). 
V(solution b) = 500 mL ÷ 1000 mL/L. 
V(solution b) = 0.5 L; volume of solution b. 
c(K₂CrO₄) = n(K₂CrO₄) ÷ V(solution b). 
c(AgNO₃) = 1.75 mol ÷ 0.5 L. 
c(AgNO₃) = 3.5 mol/L = 3.5 M. 
From dissociation of silver nitrate: c(K₂CrO₄) = c/2(K⁺) = c(CrO₄²⁻). 
c(K⁺) = 7 M; the concentration of potassium ions in the original solution b. 
c(CrO₄²⁻) = 3.5 M; the concentration of silver ions in the original solution b. 
7) V(final solution) = V(solution a) + V(solution b). 
V(final solution) = 500.0 mL + 500.0 mL. 
V(final solution) = 1000 mL ÷ 1000 mL/L. 
V(final solution) = 1 L. 
n(NO₃⁻) = 2 mol. 
c(NO₃⁻) = n(NO₃⁻) ÷ V(final solution) 
c(NO₃⁻) = 2 mol ÷ 1 L. 
c(NO₃⁻) = 2 M; the concentration of nitrate anions in final solution. 
8) in the solution b there were 3.5 mol of potassium cations, but one part of them reacts with 2 moles of nitrate anions: 
K⁺(aq) + NO₃⁻(aq) → KNO₃(aq). 
From chemical reaction: n(K⁺) : n(NO₃⁻) = 1 : 1. 
Δn(K⁺) = 3.5 mol - 2 mol. 
Δn(K⁺) = 1.5 mol; amount of potassium anions left in final solution. 
c(K⁺) = Δn(K⁺) ÷ V(final solution). 
c(K⁺) = 1.5 mol ÷ 1 L. 
c(K⁺) = 1.5 M; the concentration of potassium cations in final solution.