asked 17.5k views
3 votes
The sum of the speeds is 720.8 miles per hour. If the speed of the first train is 9.2 mph faster than that of the second train, find the speeds of each

asked
User Brae
by
7.8k points

2 Answers

5 votes
Let the speed of second train = x mph

Speed of first train = (x+9.2) mph

The sum of the speeds is 720.8 mph


x + (x + 9.2) = 720.8 \\ \\ 2x + 9.2 = 720.8 \\ \\ 2x = 720.8 - 9.2 \\ \\ 2x = 711.6 \\ \\ x = (711.6)/(2) \\ \\ \underline{x = 355.8 \: mph}


\underline{x + 9.2 = 355.8 + 9.2 = 365 \: mph}


\textbf{\red{Speed of first train = 365 mph}} \\ \\ \textbf{\red{Speed of second train = 355.8 mph}}
answered
User Jamesqiu
by
8.4k points
3 votes

Sum and difference problem.

Speed of faster train = (Sum+difference)/2=(720.8+9.2)/2=365 mph

Speed of slower train = (Sum-difference)/2=(720.8-9.2)/2=355.8 mph

answered
User David Parsons
by
8.6k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.