The coefficients are 2C₄H₁₀ + 13O₂ ⟶ 8CO₂ + 10H₂O 
Step 1. Gather all the information in one place. 
M_r: 58.12 32.00 44.01 18.02 
 aC₄H₁₀ + bO₂ ⟶ cCO₂ + dH₂O 
m/g: 1.76 0.90 
n/mol: 0.010 
Step 2. Calculate the mass of C₄H₁₀. 
Mass = 0.010 mol C₄H₁₀ × (58.12 g C₄H₁₀/1 mol C₄H₁₀) = 0.581 g C₄H₁₀ 
Step 3. Calculate the mass of O₂ 
Mass of C₄H₁₀ + mass of O₂ = mass of CO₂ + mass of H₂O 
0.581 g + x g = 1.76 g + 0.90 g 
x = 1.76 + 0.90 - 0.581 = 2.079 
Our information now has the form: 
M_r: 58.12 32.00 44.01 18.02 
 aC₄H₁₀ + bO₂ ⟶ cCO₂ + dH₂O 
m/g: 0.581 2.079 1.76 0.90 
n/mol: 0.010 
Step 4. Calculate the moles of each compound. 
Moles of O₂ = 2.079 g O₂ × (1 mol O₂/32.00 g O₂) = 0.064 97 mol O₂ 
Moles of CO₂ = 1.76 g CO₂ × (1 mol CO₂/44.01 g CO₂) = 0.040 00 mol CO₂ 
Moles of H₂O = 0.90 g H₂O × (1 mol H₂O/18.02 g H₂O) = 0.0499 mol H₂O 
Our information now has the form: 
 aC₄H₁₀ + bO₂ ⟶ cCO₂ + dH₂O 
n/mol: 0.010 0.064 97 0.040 00 0.0499 
Step 5: Calculate the molar ratios of all the compounds. 
a:b:c:d = 0.010:0.064 97:0.040 00:0.0499 = 1:6.497:4.000:4.99
= 2 :12.99:8.00:9.98 ≈ 2:13:8:10 
∴ a = 2; b = 13; c = 8; d = 10 
The balanced equation is 
2C₄H₁₀ + 13O₂ ⟶ 8CO₂ + 10H₂O