asked 107k views
4 votes
Drag the tiles to the correct boxes to complete the pairs.

Match each radical equation with its solution.

Drag the tiles to the correct boxes to complete the pairs. Match each radical equation-example-1
asked
User Aross
by
8.2k points

1 Answer

0 votes

Answer:

  • x=5 →
    √((x-1)^3)=8
  • x=19 →
    \sqrt[4]{(x-3)^5}=32
  • x=29 →
    √((x-4)^3)=125
  • x=6 →
    \sqrt[3]{(x+2)^4}=16

Explanation:

First tile:


√((x-1)^3)=8

When we put x=5 we obtain:


√((5-1)^3)=8\\\\√(4^3)=8\\\\√(64)=8\\\\√(8^2)=8\\\\8=8

Hence, the first tile must be dragged to x=5

Second tile:


\sqrt[4]{(x-3)^5}=32\\\\(x-3)^5=(32)^4\\\\(x-3)^5=(2^5)^4

Now when x=19

we have:


(19-3)^5=(2^5)^4\\\\(16)^5=2^(20)\\\\(2^4)^5=2^(20)\\\\2^(20)=2^(20)

( Since:


(a^m)^n=a^(mn) )

Third tile:


√((x-4)^3)=125\\\\(x-4)^3=(125)^2\\\\Since\ on\ squaring\ both\ side\ of\ the\ equation\\\\(x-4)^3=(5^3)^2\\\\(x-4)^3=5^6

when x=29 we have:


(29-4)^3=5^6\\\\(25)^3=5^6\\\\(5^2)^3=5^6\\\\5^6=5^6

Fourth tile:


\sqrt[3]{(x+2)^4}=16\\\\On\ cubing\ both\ side\ of\ the\ equation\ we\ get:\\\\(x+2)^4=(16)^3\\\\(x+2)^4=(2^4)^3\\\\(x+2)^4=2^(12)

when x=6 we have:


8^4=2^(12)\\\\(2^3)^4=2^(12)\\\\2^(12)=2^(12)

answered
User Clifton Labrum
by
8.3k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.