Answer:
θ = 4.1 rev
Step-by-step explanation:
For this problem we can use the relationship of rotational kinematics 
 w = θ / t 
 θ = w t 
Angular and linear variables are related. 
 v = w r 
 w = v/r
 θ = (v / r) t (1) 
We see that we must find the linear velocity and the radius of the orbit, let's use Bohr modeling 
The radius of the orbit 
 
 = a₀ n²
 = a₀ n² 
 a₀ = 0.0529 nm 
For our case 
n = 3 
 r₃ = 0.0529 3² 
 r₃ = 0.4761 nm 
The energy of the atomic level is 
 Eₙ = -13.606 / n² 
n = 3 
 E₃ = -13.606 / 3² 
 E₃ = -1.512 eV 
Let's reduce to July 
 E₃ = -1.512 eV (1.6 10⁻¹⁹ J / 1 eV) = 2.4192 10⁻¹⁹ J 
Let's use mechanical energy is 
 E = K + U 
 E = ½ m v² - k e² / r 
 v² = (E + k e² /r) 2/m 
 v² = (2.4192 10⁻¹⁹ + 8.99 10⁹ (1.6 10⁻¹⁹)² /0.4761 10-⁻⁹) 2/9.1 10⁻³¹ 
 v² = (2.4192 10⁻¹⁹ + 4.8339 10⁻¹⁹) 0.2198 10³¹ 
 v² = 1.5942 10¹² 
 v = 1.23 10⁶ m / s 
Let's replace in equation 1 
 θ = v t / r 
 θ = 1.23 10⁶ 10⁻⁸ / 0.4761 10⁻⁹ 
 θ = 2.5835 10¹ rad 
Let's reduce revolutions 
 θ = 25,835 rad (1 rev / 2π rad) 
 θ = 4.1 rev