asked 207k views
4 votes
Assume that foot lengths of women are normally distributed with a mean of 9.6 in and a standard deviation of 0.5 in.a. Find the probability that a randomly selected woman has a foot length less than 10.0 in.b. Find the probability that a randomly selected woman has a foot length between 8.0 in and 10.0 in.c. Find the probability that 25 women have foot lengths with a mean greater than 9.8 in.

asked
User MisterEd
by
7.7k points

1 Answer

4 votes

Answer:

a) 78.81% probability that a randomly selected woman has a foot length less than 10.0 in.

b) 78.74% probability that a randomly selected woman has a foot length between 8.0 in and 10.0 in.

c) 2.28% probability that 25 women have foot lengths with a mean greater than 9.8 in.

Explanation:

The Central Limit Theorem estabilishes that, for a random variable X, with mean
\mu and standard deviation
\sigma, a large sample size can be approximated to a normal distribution with mean
\mu and standard deviation
(\sigma)/(√(n)).

Normal probability distribution

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean
\mu and standard deviation
\sigma, the zscore of a measure X is given by:


Z = (X - \mu)/(\sigma)

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:


\mu = 9.6, \sigma = 0.5.

a. Find the probability that a randomly selected woman has a foot length less than 10.0 in

This probability is the pvalue of Z when
X = 10.


Z = (X - \mu)/(\sigma)


Z = (10 - 9.6)/(0.5)


Z = 0.8


Z = 0.8 has a pvalue of 0.7881.

So there is a 78.81% probability that a randomly selected woman has a foot length less than 10.0 in.

b. Find the probability that a randomly selected woman has a foot length between 8.0 in and 10.0 in.

This is the pvalue of Z when X = 10 subtracted by the pvalue of Z when X = 8.

When X = 10, Z has a pvalue of 0.7881.

For X = 8:


Z = (X - \mu)/(\sigma)


Z = (8 - 9.6)/(0.5)


Z = -3.2


Z = -3.2 has a pvalue of 0.0007.

So there is a 0.7881 - 0.0007 = 0.7874 = 78.74% probability that a randomly selected woman has a foot length between 8.0 in and 10.0 in.

c. Find the probability that 25 women have foot lengths with a mean greater than 9.8 in.

Now we have
n = 25, s = (0.5)/(√(25)) = 0.1.

This probability is 1 subtracted by the pvalue of Z when
X = 9.8. So:


Z = (X - \mu)/(s)


Z = (9.8 - 9.6)/(0.1)


Z = 2


Z = 2 has a pvalue of 0.9772.

There is a 1-0.9772 = 0.0228 = 2.28% probability that 25 women have foot lengths with a mean greater than 9.8 in.

answered
User Houssem ZITOUN
by
7.9k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.