asked 199k views
2 votes
State the domain and end behavior of each rational function. Identify all horizontal and vertical asymptotes on the

graph of each rational function. Then, verify your answer by graphing the function on the graphing calculator.
1. f(x) = −x + 6 / 2x + 3
2. f(x) = 3x − 6 / x
3. f(x) = 3 / x2 − 25
4. f(x) = x2 − 2 / x2 + 2x − 3
5. f(x) = x2 − 5x − 4 / x + 1
6. f(x) = 5x / x2 + 9

1 Answer

3 votes

Answer:

Rational Functions

Explanation:

1)


f(x) = - (x + 6)/(2x + 3)

• State the domain

X ∈ R :
x \\eq - (3)/(2)

• End Behaviour


x \rightarrow \infty , y \rightarrow -(1)/(2)

• Horizontal and Vertical


y= -(1)/(2) , x=-(3)/(2)

• Graphic (Annex)

2)
f(x) =  (3x − 6)/(x)

• State the domain

X ∈ R :
x \\eq  0

• End Behaviour


x \rightarrow \infty , y \rightarrow 3

• Horizontal and Vertical


y= 0

• Graphic (Annex)

3)
f(x) =  (3)/(x^2-25)

• State the domain

X ∈ R :
x \\eq  5.5

• End Behaviour


x \rightarrow +/-\infty , y \rightarrow 0

• Horizontal and Vertical


y= 0 , x=+/- 5

• Graphic (Annex)

4)
f(x) = ( x^2-2)/(x^2+2x-3)

• State the domain

X ∈ R :
x \\eq  (3,1)

• End Behaviour


x \rightarrow +/-\infty , y \rightarrow +/- 1

• Horizontal and Vertical


y= 1 , x= (-3,1)

• Graphic (Annex)

5)
f(x) =  ( x^2 − 5x − 4)/(x + 1)

• State the domain

X ∈ R :
x \\eq  -1

• End Behaviour


x \rightarrow +/-\infty , y \rightarrow +/ \infty

• Horizontal and Vertical


y=none , x= -1

• Graphic (Annex)

6)
f(x) = ( 5x )/(x^2 + 9 )

• State the domain

X ∈ R

• End Behaviour


x \rightarrow +/-\infty , y \rightarrow 0

• Horizontal and Vertical


y= 0 , x= none

• Graphic (Annex)

State the domain and end behavior of each rational function. Identify all horizontal-example-1
answered
User Paulo Abreu
by
8.5k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.