asked 42.6k views
0 votes
If x and y are integers greater than 1, is x a multiple of y ? (1) \small 3y^{2}+7y=x (2) \small x^{2}-x is a multiple of y. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient. EACH statement ALONE is sufficient. Statements (1) and (2) TOGETHER are NOT sufficient.

asked
User Mordi
by
8.6k points

1 Answer

0 votes

Answer:

Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.

Explanation:

A multiple of a number is obtained after multiplying the number by an integer.

Here,

x, y are any two integers greater than 1,

(1) We have,


\small 3y^(2)+7y=x


\implies y(3y+7) = x

∵ y is an integer ⇒ 3y + 7 is also an integer,

⇒ y × an integer = x

That is, when we multiply y by a number we obtain x,

∴ x is a multiple of y.

Thus, statement (1) ALONE is sufficient.

(2),


\small x^(2)-x\text{ is a multiple of y}

I.e.


y* a = x^2-x, where a is an integer,


\implies y* a = x(x-1)

∵ x and x - 1 are disjoint numbers,

There are three possible cases,

Case 1 : x is multiple of y

Case 2 : (x-1) is a multiple of y,

Case 3 : neither x nor x - 1 are multiple of y but their product is multiple of y,

Thus, statement (2) is not sufficient.

answered
User JimEvans
by
8.2k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.