Answer:
a₁= 1.98 m/s² : magnitud of the normal acceleration 
a₂=0.75 m/s² : magnitud of the tangential acceleration 
Step-by-step explanation:
Formulas for uniformly accelerated circular motion
a₁=ω²*r : normal acceleration  Formula (1)
a₂=α*r: normal acceleration Formula (2)
ωf²=ω₀²+2*α*θ Formula (3)
ω : angular velocity 
α : angular acceleration
 r : radius 
ωf= final angular velocity 
ω₀ : initial angular velocity 
θ : angular position theta
 r : radius 
Data
r =0.4 m
ω₀= 1 rad/s
α=0.3 *θ , θ= 2π
α=0.3 *2π= 0,6π rad/s²
Magnitudes of the normal and tangential components of acceleration of a point P on the rim of the disk when theta has completed one revolution.
We calculate ωf with formula 3:
ωf²= 1² + 2*0.6π*2π =1+2.4π ²= 24.687
ωf=
 =4.97 rad/s
 =4.97 rad/s
a₁=ω²*r = 4.97²*0.4 = 1.98 m/s² 
a₂=α*r = 0,6π * 0.4 = 0.75 m/s²