asked 124k views
1 vote
If y(x, t) = (4.7 mm)sin(kx + (675 rad/s)t + ϕ) describes a wave traveling along a string, how much time does any given point on the string take to move between displacements y = +2.0 mm and y = −2.0 mm?

asked
User DavidP
by
8.0k points

1 Answer

2 votes

Answer:

It takes 0.00127 seconds.

Step-by-step explanation:

The equation its


y(x,t) = 4.7 \ mm  \ sin ( kx + 675 (rad)/(s) t + \phi).

We want the time for ANY POINT, so, for convenience, lets take x=0


y(0,t) = 4.7 \ mm  \ sin ( k*0 + 675 (rad)/(s) t + \phi).


y(0,t) = 4.7 \ mm  \ sin ( 675 (rad)/(s) t + \phi).

Now, we want the positions


y(0,t_1)=2 \ mm


y(0,t_2)=-2 \ mm

so, for the first position:


y(0,t_1)=2 \ mm


2 \ mm = 4.7 \ mm  \ sin ( 675 (rad)/(s) t_1 + \phi).


\frac{2 \ mm} {4.7 \ mm }=  sin ( 675 (rad)/(s) t_1 + \phi).


0.42 =  sin ( 675 (rad)/(s) t_1 + \phi).


sin^-1(0.42) =  675 (rad)/(s) t_1 + \phi).

and for the second one:


y(0,t_2)=-2 \ mm


-2 \ mm = 4.7 \ mm  \ sin ( 675 (rad)/(s) t_2 + \phi).


\frac{-2 \ mm} {4.7 \ mm }=  sin ( 675 (rad)/(s) t_2 + \phi).


-0.42 =  sin ( 675 (rad)/(s) t_2 + \phi).


sin^-1(0.42) =  675 (rad)/(s) t_2 + \phi).

Now, we can subtract both:


sin^-1(0.42) -sin^-1(-0.42) =  675 (rad)/(s) t_1 + \phi - 675 (rad)/(s) t_2 + \phi


sin^-1(0.42) -sin^-1(-0.42) =  675 (rad)/(s) t_1 - 675 (rad)/(s) t_2


sin^-1(0.42) -sin^-1(-0.42) =  675 (rad)/(s) (t_1 - t_2)


(sin^-1(0.42) -sin^-1(-0.42))/( 675 (rad)/(s)) = (t_1 - t_2)


(0.43 - (-0.43))/( 675 (rad)/(s)) = (t_1 - t_2)


(0.86)/( 675 (rad)/(s)) = (t_1 - t_2)


0.00127 s = (t_1 - t_2)

The strings take 0.00127 seconds.

answered
User Anudeepks
by
8.5k points