asked 122k views
3 votes
PLEASE HELP!!! GEOMETRY AND IDK WHAT IM DOING NEED TO PASS

In the diagram, and . What additional information is necessary to prove that ΔABC is similar to ΔFGH, using the SSS similarity theorem?

PLEASE HELP!!! GEOMETRY AND IDK WHAT IM DOING NEED TO PASS In the diagram, and . What-example-1
asked
User Neurax
by
8.5k points

2 Answers

6 votes

Answer:

revolvelution

Explanation:

answered
User Vidhi
by
8.2k points
1 vote

Answer with explanation:

To prove two triangles are similar using SSS Similarity Criterion we need to prove that sides of triangles are Proportional.

Sides of two triangles can be obtained using Distance formula.

Coordinates of ΔABC are= A(0,0) , B(6,3) and C(-3,3)

Coordinates of ΔFGH are=F(-3,-2),G(-1,-3) and H(-4, -3)


AB=√((6-0)^2+(3-0)^2)\\\\=√(36+9)\\\\=√(45)\\\\=5√(3)\\\\BC=√((6+3)^2+(3-3)^2)\\\\BC=9\\\\AC=√((-3-0)^2+(3-0)^2)\\\\AC=√(9+9)\\\\=√(18)\\\\=3√(2)\\\\FG=√((-3+1)^2+(-2+3)^2)\\\\FG=√(4+1)\\\\FG=√(5)\\\\GH=√((-1+4)^2+(-3+3)^2)\\\\GH=3\\\\HF=√((-4+3)^2+(-3+2)^2)\\\\HF=√(1+1)\\\\HF=√(2)

Ratio of Corresponding sides are


1.\rightarrow (AB)/(FG)=(3√(5))/(√(5))\\\\=3\\\\2.\rightarrow (AC)/(FH)=(3√(2))/(√(2))\\\\=3\\\\3.\rightarrow (CB)/(HG)=(9)/(3)\\\\=3\\\\\rightarrow (AB)/(FG)=(AC)/(FH)=(CB)/(HG)

As corresponding sides are proportional, so trinagles are Similar.

ΔABC ≅ ΔFGH--------[SSS]

Hence proved.

answered
User Walf
by
8.4k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.