asked 23.4k views
1 vote
A square has a diagonal length of 5 cm what is the area of a square

asked
User Kalaxy
by
8.2k points

2 Answers

6 votes

Answer:

Area of square = 12.48 cm^2

Explanation:

Since the square has all sides equal, and when diagonal is made, square form two right angled triangles. Using Pythagoras theorem we can find the length of side of the square.


c^2 = a^2 + b^2

where c = 5cm and a==b (square has all sides equal)

Putting value of b = a


(5)^2 = a^2 + a^2\\25 = 2 a^2\\25/2 = a^2\\=> a^2 = 12.5\\ => √(a^2) = √(12.5)\\=> a = 3.53\, cm

So, length of side of square = 3.53

Area of square = (3.53)^2

Area of square = 12.48 cm^2.

answered
User Umamaheswaran
by
8.6k points
5 votes

Hello!

The answer is:

The area of the given square is equal to
12.5cm^(2)


Area=12.5cm^(2)

Why?

To solve the problem, we don't need to calculate the length of the sides of the square. We are given the diagonal length of the square, so using the following formula, we can calculate the are of the square without knowing the sides:


Area=(diagonal^(2) )/(2)

So, substituting we have:


Area=((5cm)^(2) )/(2)=(25cm^(2) )/(2)=12.5cm^(2)

Hence, we have that the area of the given square is equal to
12.5cm^(2)

Have a nice day!

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.