asked 143k views
0 votes
Compute the value of the following expressions: 323 mod 5 323 div 5 −323 mod 5 −323 div 5 327 mod 3 (64 · (−67) + 201) mod 7 (〖38〗^12) mod 6 (〖38〗^12) mod 3

asked
User Mmd
by
8.3k points

2 Answers

5 votes

323 mod 5 = 3

−323 mod 5 = -3

327 mod 3 = 0

(64 * (-67) + 201) mod 7 = 6

(38^12) mod 6 = 4

(38^12) mod 3 = 1

Explanation:

The modulo operation looks for remainders from the quotients. In order to find them, divide the whole number by the mod number. Then take just the decimal after the whole answer and multiply it by the mod number.

323 mod 5

323/5 = 64.6

.6 * 5 = 3

−323 mod 5

323/5 = -64.6

-.6 * 5 = -3

327 mod 3

327/5 = 109

0 * 3 = 0

(64 * (-67) + 201) mod 7

64 * -67 = -4288 + 201 = 4087

4087/7 = 583.85714

.85714 * 7 = 6

(38^12) mod 6

38^12 = 9.07x10^18

9.07x10^18/6 = 1510956318082499242.6666667

.666667 * 6 = 4

(38^12) mod 3

38^12 = 9.07x10^18

9.07x10^18/3 = 3021912636164998485.333333

.3333333 * 3 = 1

answered
User Petr Hurtak
by
8.1k points
1 vote

Answer:

323 mod 5 = 3

−323 mod 5 = -3

327 mod 3 = 0

(64 * (-67) + 201) mod 7 = 6

(38^12) mod 6 = 4

(38^12) mod 3 = 1

Explanation:

The modulo operation looks for remainders from the quotients. In order to find them, divide the whole number by the mod number. Then take just the decimal after the whole answer and multiply it by the mod number.

323 mod 5

323/5 = 64.6

.6 * 5 = 3

−323 mod 5

323/5 = -64.6

-.6 * 5 = -3

327 mod 3

327/5 = 109

0 * 3 = 0

(64 * (-67) + 201) mod 7

64 * -67 = -4288 + 201 = 4087

4087/7 = 583.85714

.85714 * 7 = 6

(38^12) mod 6

38^12 = 9.07x10^18

9.07x10^18/6 = 1510956318082499242.6666667

.666667 * 6 = 4

(38^12) mod 3

38^12 = 9.07x10^18

9.07x10^18/3 = 3021912636164998485.333333

.3333333 * 3 = 1

answered
User Jyoseph
by
8.4k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.