asked 180k views
4 votes
Find the exact values of sin0/2 and cos0/2 for sin 0=11/19 on the interval 0 < 0 < 90

1 Answer

8 votes

Explanation:


\sin( ( \alpha )/(2) ) = \sqrt{ (1 - \cos( \alpha ) )/(2) }


\cos( ( \alpha )/(2) ) = \sqrt{ (1 + \cos( \alpha ) )/(2) }

Find cos using Pythagorean theorem.


( \sin( \alpha ) ) {}^(2) + ( \cos( \alpha ) ) {}^(2) = 1


( (11)/(19) ) { }^(2) + ( \cos( \alpha ) ) {}^(2) = 1


( (121)/(281) ) + ( \cos( \alpha ) ) {}^(2) = 1


( \cos( \alpha ) ) {}^(2) = (160)/(281)


\cos( \alpha ) = (4 √(10) )/(19)

Now, we use the formula


\sin( ( \alpha )/(2) ) = \sqrt{ (1 - (4 √(10) )/(19) )/(2) }


\sin( ( \alpha )/(2) ) = \sqrt{ ( (19 - 4 √(10) )/(19) )/(2) }


\sin( ( \alpha )/(2) ) = \sqrt{ (19 - 4 √(10) )/(38) }


\cos( ( \alpha )/(2) ) = \sqrt{ (1 + \cos( \alpha ) )/(2) }


\cos( ( \alpha )/(2) ) = \sqrt{ (19 + 4 √(10) )/(38) }

answered
User Hitoshi
by
8.1k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.