asked 75.3k views
17 votes
How to solve this plss frac{(\sqrt{(3)})^{5}}{((\sqrt{(3)})^{-4})}=(\sqrt{(3)})^{(2k+1)​

1 Answer

5 votes

Answer:

k = 4

Explanation:

Given equation:


((√(3))^(5))/((√(3))^(-4))=(√(3))^((2k+1))


\textsf{Apply exponent rule} \quad (a^b)/(a^c)=a^(b-c):


\implies (√(3))^((5-(-4)))=(√(3))^((2k+1))


\implies (√(3))^(9)=(√(3))^((2k+1))


\textsf{Apply exponent rule} \quad a^(f(x))=a^(g(x)) \implies f(x)=g(x):


\implies (√(3))^(9)=(√(3))^((2k+1))


\implies 9=2k+1


\implies 2k=8


\implies k=4

answered
User Farmerbb
by
8.4k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.