asked 23.5k views
0 votes
A customer at a store paid $42 for 4 pairs of pants and 3 shirts. At the same store, a second customer paid $2 more for 1 pair of pants and 7 shirts. The price of each pair of pants is the same, and the price of each shirt is the same. Which system of equations can be used to find the price in dollars of each pair of pants, x, and each shirt, y?

1 Answer

4 votes

Answer:

The system of Equations:

4x + 3y = 42

x + 7y = 44

Explanation:

Let the price in dollars of

each pair of pants = x

each shirt = y

A customer at a store paid $42 for 4 pairs of pants and 3 shirts.

Hence:

4 × x + 3 × y = $42

4x + 3y = 42

At the same store, a second customer paid $2 more for 1 pair of pants and 7 shirts.

This means he, paid $42 +$2 = $44

Hence:

1 × x + 7 × y = 44

x + 7y = 44

The system of equations can be used to find the price in dollars of each pair of pants, x, and each shirt, y is

4x + 3y = 42.... Equation 1

x + 7y = 44..... Equation 2

answered
User Patrick Kostjens
by
8.6k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.