Answer:
b. 36
Explanation:
Evaluate x^4 - 4 x^2 + 3 x where x = -3: 
x^4 - 4 x^2 + 3 x = (-3)^4 - 4×(-3)^2 - 3×3 
 
Hint: | Evaluate (-3)^2. 
(-3)^2 = 9: 
(-3)^4 - 49 - 3×3 
 
Hint: | Determine the sign of (-3)^4. 
(-3)^4 = (-1)^4×3^4 = 1×3^4: 
3^4 - 4×9 - 3×3 
 
Hint: | Compute 3^4 by repeated squaring. 
3^4 = (3^2)^2: 
(3^2)^2 - 4×9 - 3×3 
 
Hint: | Evaluate 3^2. 
3^2 = 9: 
9^2 - 4×9 - 3×3 
 
Hint: | Evaluate 9^2. 
9^2 = 81: 
81 - 4×9 - 3×3 
 
Hint: | Multiply -4 and 9 together. 
-4×9 = -36: 
81 + -36 - 3×3 
 
Hint: | Multiply 3 and -3 together. 
3 (-3) = -9: 
81 - 36 + -9 
 
Hint: | Group the negative terms in 81 - 36 - 9 together and factor out the minus sign. 
81 - 36 - 9 = 81 - (36 + 9): 
81 - (36 + 9) 
 
Hint: | Evaluate 36 + 9 using long addition. 
 | 1 | 
 | 3 | 6 
+ | | 9 
 | 4 | 5: 
81 - 45 
 
Hint: | Subtract 45 from 81. 
 | 7 | 11 
 | 8 | 1 
- | 4 | 5 
 | 3 | 6: 
Answer: 36