asked 199k views
0 votes
If 5 + 3xy + 4y^3 = 0 then find dy/dx in terms of x and y

asked
User Anyone
by
7.3k points

1 Answer

5 votes

Answer:


\displaystyle (dy)/(dx)=(-3y)/(3x+ 12y^2)

Explanation:

Implicit Differentiation

We use implicit differentiation when it's not possible to find an expression of y as a function of x, or the expression is very hard to differentiate.

The implicit differentiation takes the original equation and differentiates each term, usually applying the product, quotient, power, or other similar rules.

In the course of the differentiation, we'll use f' as the derivative of f.

We'll find y'=dy/dx in the following equation:


5 + 3xy + 4y^3 = 0

Differentiating:


(5)' + (3xy)' + (4y^3)' = (0)'

The derivative of a constant is 0, thus:


(3xy)' + (4y^3)' = 0

The first term is a product of variables, so we apply the product rule:


(f.g)'=f'.g+f.g'

The second term is the power of y. We apply the chain rule:


[f(g)]'=f'.g'


3(x'y+xy') + 4(3y^2y') = 0

Operating:


3x'y+3xy'+ 12y^2y' = 0

Since x'=1:


3y+3xy'+ 12y^2y' = 0

Subtracting 3y:


3xy'+ 12y^2y' = -3y

Take y' as a common factor:


y'(3x+ 12y^2) = -3y

Solve for y':


\displaystyle y'=(-3y)/(3x+ 12y^2)


\boxed{\displaystyle (dy)/(dx)=(-3y)/(3x+ 12y^2)}

answered
User Lalit Jadav
by
8.0k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.