Answer: 
t≈ 8
Explanation:
\text{Compounded Monthly:} 
Compounded Monthly: 
A=P\left(1+\frac{r}{n}\right)^{nt} 
A=P(1+ 
n 
r 
 
 ) 
nt 
 
Compound interest formula 
A=109700\hspace{35px}P=97000\hspace{35px}r=0.016\hspace{35px}n=12 
A=109700P=97000r=0.016n=12 
Given values 
109700= 
109700= 
\,\,97000\left(1+\frac{0.016}{12}\right)^{12t} 
97000(1+ 
12 
0.016 
 
 ) 
12t 
 
Plug in values 
109700= 
109700= 
\,\,97000(1.0013333)^{12t} 
97000(1.0013333) 
12t 
 
Simplify 
\frac{109700}{97000}= 
97000 
109700 
 
 = 
\,\,\frac{97000(1.0013333)^{12t}}{97000} 
97000 
97000(1.0013333) 
12t 
 
 
 
Divide by 97000 
1.1309278= 
1.1309278= 
\,\,1.0013333^{12t} 
1.0013333 
12t 
 
\log\left(1.1309278\right)= 
log(1.1309278)= 
\,\,\log\left(1.0013333^{\color{blue}{12t}}\right) 
log(1.0013333 
12t 
 ) 
Take the log of both sides 
\log\left(1.1309278\right)= 
log(1.1309278)= 
\,\,\color{blue}{12t}\log\left(1.0013333\right) 
12tlog(1.0013333) 
Bring exponent to the front 
\frac{\log\left(1.1309278\right)}{\log\left(1.0013333\right)}= 
log(1.0013333) 
log(1.1309278) 
 
 = 
\,\,\frac{12t\log\left(1.0013333\right)}{\log\left(1.0013333\right)} 
log(1.0013333) 
12tlog(1.0013333) 
 
 
Divide both sides by log(1.0013333) 
92.3402971= 
92.3402971= 
\,\,12t 
12t 
Use calculator 
\frac{92.3402971}{12}= 
12 
92.3402971 
 
 = 
\,\,\frac{12t}{12} 
12 
12t 
 
 
Divide by 12 
7.6950248= 
7.6950248= 
\,\,t 
t