asked 115k views
0 votes
7. All of the following are perfect square trinomials EXCEPT one. Which is it?

A. 4x2 + 12xy + 9y2
C. xy2 - 4x2y2 + 4x2y2
B. 9a? - 36a + 36
D. a²b2 + 4a3b + 4a?​

1 Answer

4 votes

Answer:

All answers EXCEPT answer C. are perfect square trinomials.

Explanation:

A perfect square trinomial is polynomial that satisfies the following condition:


(a+b)^(2) = a^(2)+2\cdot a \cdot b + b^(2),
\forall\,a,b\in\mathbb{R}

Let prove if each option observe this:

a)
4\cdot x^(2) + 12\cdot x\cdot y + 9\cdot y^(2)

1)
4\cdot x^(2) + 12\cdot x\cdot y + 9\cdot y^(2) Given

2)
(2\cdot x)^(2)+ 2\cdot (2\cdot x)\cdot (3\cdot y)+(3\cdot y)^(2) Definition of power/Distributive, associative and commutative properties.

3)
a = 2\cdot x,
b = 3\cdot y Definition of perfect square trinomial/Result.

b)
9\cdot a^(2)-36\cdot a + 36

1)
9\cdot a^(2)-36\cdot a + 36 Given.

2)
(3\cdot a)^(2)-2\cdot (3\cdot a)\cdot 6 + 6^(2) Definition of power/Distributive, associative and commutative properties.

3)
a = 3\cdot a,
b = 6 Definition of perfect square trinomial/Result.

c)
x\cdot y^(2)-4\cdot x^(2)\cdot y^(2)+4\cdot x^(2)\cdot y^(2)

1)
x\cdot y^(2)-4\cdot x^(2)\cdot y^(2)+4\cdot x^(2)\cdot y^(2) Given

2)
x\cdot y\cdot (1-4\cdot x+4\cdot x) Distributive property.

3)
x\cdot y \cdot 1 Existence of the additive inverse/Modulative property.

4)
x\cdot y Modulative property/Result.

d)
a^(2)\cdot b^(2)+4\cdot a^(3)\cdot b + 4\cdot a^(4)

1)
a^(2)\cdot b^(2)+4\cdot a^(3)\cdot b + 4\cdot a^(4) Given

2)
(a\cdot b)^(2)+2\cdot (a\cdot b)\cdot (2\cdot a^(2))+(2\cdot a^(2)) Definition of power/Distributive, associative and commutative properties.

3)
a = a\cdot b,
b = 2\cdot a^(2) Definition of perfect square trinomial.

All answers EXCEPT answer C. are perfect square trinomials.

answered
User Olsavage
by
7.3k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.