asked 194k views
3 votes
6. Use the data to find the following (Please show work)

2, 3, 5, 7, 8, 10, 11, 11, 13, 15, 17, 18
a. Mean
b. Median
C. Mode
d. Range

1 Answer

2 votes

Answer:

1.
\boxed{ \boxed{ \sf{mean = 10}}}

2.
\boxed{ \boxed{ \sf{median = 10.5}}}

3.
\boxed{ \boxed{ \sf{mode = 11}}}

4.
\boxed{ \boxed{ \sf{range = 16}}}

Explanation:

1. Given data : 2 , 3 , 5 , 7 , 8 , 10 , 11 , 11 , 13 , 15 , 17 , 18

Σx = 2 + 3 + 5 + 7 + 8 + 10 + 11 + 11 + 13 + 15 + 17 + 18 = 120

N ( total number of items ) = 12

Finding the mean

To find the mean, divide the sum of all the items by the number of items.


\boxed{ \sf{mean = (Σx)/(N) }}


\dashrightarrow{ \sf{mean = (120)/(12) }}


\dashrightarrow{ \sf{mean = 10}}

Mean = 10

----------------------------------------------------------

2. Given data : 2 , 3 , 5 , 7 , 8 , 10 , 11 , 11 , 13 , 15 , 17 , 18

N ( total number of items ) = 12

Finding the position of median


\boxed{ \sf{median = { (n + 1)/(2) }^(th \: item)}}


\dashrightarrow{ \sf{median = {( (12 + 1)/(2)) }^(th \: ) item}}


\dashrightarrow{ \sf{median = {( (13)/(2)) }^(th \: )item }}


\dashrightarrow{ \sf{median = {6.5}^(th \: )}} item


\sf{ {6.5}^(th) } item is the average of 6 th and 7 th items.


\sf{∴ \: median = \frac{ {6}^(th)item + {7}^(th) item}{2}}


\dashrightarrow{ \sf{median = (10 + 11)/(2) }}


\dashrightarrow{ \sf{median = (21)/(2) }}


\dashrightarrow{ \sf{median = 10.5}}

Median = 10.5

-----------------------------------------------------------

3. The mode of a set of data is the value with the highest frequency.

Given data : 2, 3, 5, 7, 8, 10, 11, 11, 13, 15, 17, 18

Here, 11 has the highest frequency.

So, Mode = 11

----------------------------------------------------------

4. Highest number = 18

Lowest number = 2


\boxed{ \sf{range = highest \: number - lowest \: number}}


\dashrightarrow{ \sf{range = 18 - 2}}


\dashrightarrow{ \sf{range = 16}}

Hope I helped!

Best regards! :D

answered
User Thrallix
by
7.3k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.