asked 164k views
4 votes
Evaluate the integral. W (x2 y2) dx dy dz; W is the pyramid with top vertex at (0, 0, 1) and base vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0)

asked
User JuanGG
by
8.2k points

1 Answer

3 votes

Answer:


\mathbf{\iiint_W (x^2+y^2) \ dx \ dy \ dz = (2)/(15)}

Explanation:

Given that:


\iiint_W (x^2+y^2) \ dx \ dy \ dz

where;

the top vertex = (0,0,1) and the base vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0)

As such , the region of the bounds of the pyramid is: (0 ≤ x ≤ 1-z, 0 ≤ y ≤ 1-z, 0 ≤ z ≤ 1)


\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \int ^(1-z)_0 \int ^(1-z)_0 (x^2+y^2) \ dx \ dy \ dz


\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \int ^(1-z)_0 ( ((1-z)^3)/(3)+ (1-z)y^2) dy \ dz


\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \ dz \ ( ((1-z)^3)/(3) \ y + \frac {(1-z)y^3)}{3}] ^(1-x)_(0)


\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \ dz \ ( ((1-z)^4)/(3)+ ((1-z)^4)/(3)) \ dz


\iiint_W (x^2+y^2) \ dx \ dy \ dz =(2)/(3) \int^1_0 (1-z)^4 \ dz


\iiint_W (x^2+y^2) \ dx \ dy \ dz =- (2)/(15)(1-z)^5|^1_0


\mathbf{\iiint_W (x^2+y^2) \ dx \ dy \ dz = (2)/(15)}

answered
User Radu Grama
by
7.4k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.