asked 41.6k views
0 votes
Suppose babies born in a large hospital have a mean weight of 3316 grams, and a standard deviation of 324 grams. If 83 babies are sampled at random from the hospital, what is the probability that the mean weight of the sample babies would differ from the population mean by greater than 54 grams?

asked
User Isopach
by
7.4k points

1 Answer

3 votes

Answer: 0.129

Explanation:

Let
\overline{X} denotes a random variable that represents the mean weight of babies born.

Population mean :
\mu= \text{3316 grams,}

Standard deviation:
\text{324 grams}

Sample size = 83

Now, the probability that the mean weight of the sample babies would differ from the population mean by greater than 54 grams will be :


P(|\mu-\overline{X}|>54)=1-P((-54)/((324)/(√(83)))<\frac{\overline{X}-\mu}{(\sigma)/(√(n))}<(-54)/((324)/(√(83))))\\\\=1-[P(-1.518<Z<1.518)\ \ \ [Z=\frac{\overline{X}-\mu}{(\sigma)/(√(n))}]\\\\=1-[P(Z<1.518)-P(z<-1.518)]\\\\=1-[P(Z<1.518)-(1-P(z<1.518))]\\\\=1-[2P(Z<1.518)-1]=2-2P(Z<1.518)\\\\=2-2(0.9355)\ [\text{By z-table}]\\\\=0.129

hence, the required probability = 0.129

answered
User Lewis Nakao
by
8.0k points

Related questions

asked Aug 12, 2020 85.5k views
The Pax Bisonica asked Aug 12, 2020
by The Pax Bisonica
8.5k points
2 answers
3 votes
85.5k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.