asked 81.7k views
1 vote
Find the exact value of each of the following under the given conditions.

a. cosine left parenthesis alpha plus beta right parenthesis        b. sine left parenthesis alpha plus beta right parenthesis        c. tangent left parenthesis alpha plus beta right parenthesis
tangent alpha equals one half
​, pi less than alpha less than StartFraction 3 pi Over 2 EndFraction
​, and cosine beta equals three fifths
​, StartFraction 3 pi Over 2 EndFraction less than beta less than 2 pi

asked
User Jarnal
by
8.4k points

1 Answer

2 votes

Answer:


(a)-(11√(5))/(25) \\(b) -(2√(5))/(25) \\(c)(11)/(2)

Explanation:


\tan \alpha =\frac12, \pi < \alpha< (3 \pi)/(2)

Therefore:


\alpha$ is in Quadrant III

Opposite = -1

Adjacent =-2

Using Pythagoras Theorem


Hypotenuse^2=Opposite^2+Adjacent^2\\=(-1)^2+(-2)^2=5\\Hypotenuse=√(5)

Therefore:


\sin \alpha =-(1)/(√(5))\\\cos \alpha =-(2)/(√(5))

Similarly


\cos \beta =\frac35, (3 \pi)/(2)<\beta<2\pi\\\beta $ is in Quadrant IV (x is negative, y is positive), therefore:\\Adjacent=$-3\\$Hypotenuse=5\\Opposite=4 (Using Pythagoras Theorem)


\sin \beta =(4)/(5)\\\tan \beta =-(4)/(3)

(a)


\cos(\alpha + \beta)=\cos\alpha\cos\beta-\sin \alpha\sin \beta\\


=-(2)/(√(5))\cdot (3)/(5)-(-(1)/(√(5)))((4)/(5))\\=-(2√(5))/(5)\cdot (3)/(5)+(√(5))/(5)\cdot(4)/(5)\\=-(2√(5))/(25)

(b)


\sin(\alpha + \beta)=\sin\alpha\cos\beta+\cos \alpha\sin \beta


\sin(\alpha + \beta)=\sin\alpha\cos\beta+\cos \alpha\sin \beta\\=-(1)/(√(5))\cdot\frac35+(-(2)/(√(5)))((4)/(5))\\=-(√(5))/(5)\cdot\frac35-(2√(5))/(5)\cdot(4)/(5)\\=-(11√(5))/(25)

(c)


\tan(\alpha + \beta)=(\sin(\alpha + \beta))/(\sin(\alpha + \beta))=-(11√(5))/(25) / -(2√(5))/(25) =(11)/(2)

answered
User Imanali Mamadiev
by
8.0k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.