asked 181k views
1 vote
Consider the diagram and the proof below.

Given: In △ABC, AD ⊥ BC
Prove: StartFraction sine (uppercase B) Over b EndFraction = StartFraction sine (uppercase C) Over c EndFraction

Triangle A B C is shown. A perpendicular bisector is drawn from point A to point D on side C B forming a right angle. The length of A D is h, the length of C B is a, the length of C A is b, and the length of A B is c.

A 2-column table has 7 rows. The first column is labeled Statement with entries In triangle A B C line segment A D is perpendicular to line segment B C, In triangle A D B sine (uppercase B) = StartFraction h Over c EndFraction, c sine (uppercase B) = h, In triangle A C D, sine (uppercase C) = StartFraction h Over b EndFraction, b sine (uppercase C) = h, question mark, StartFraction sine (uppercase B) Over b EndFraction = StartFraction sine (uppercase C) Over c EndFraction. The second column is labeled Reason with entries given, definition of sine, multiplication property of equality, definition of sine, multiplication property of equality, substitution, and division property of equality.

What is the missing statement in Step 6?

b = c

StartFraction h Over b EndFraction = StartFraction h Over c EndFraction
csin(B) = bsin(C)

bsin(B) = csin(C)

asked
User Danixa
by
8.1k points

1 Answer

3 votes

Answer:

c- the right triangle altitude theorem

Explanation:

i did it on edge! ; )

answered
User Jansky
by
8.3k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.