asked 170k views
2 votes
Find the product or type
"impossible".
3 -5 4 2


Find the product or type "impossible". 3 -5 4 2 ​-example-1
asked
User Nakeah
by
8.2k points

1 Answer

5 votes

Answer:

The product of
\begin{pmatrix}3&-5\\ \:1&7\end{pmatrix}\begin{pmatrix}4&2\\ \:-4&2\end{pmatrix} is
\begin{pmatrix}32&-4\\ -24&16\end{pmatrix}.

Explanation:

A matrix is a rectangular arrangement of numbers into rows and columns.

Matrix multiplication refers to the product of two matrices.

The main condition of matrix multiplication is that the number of columns of the 1st matrix must equal to the number of rows of the 2nd one.

To find the product of
\begin{pmatrix}3&-5\\ \:1&7\end{pmatrix}\begin{pmatrix}4&2\\ \:-4&2\end{pmatrix}


\mathrm{Multiply\:the\:rows\:of\:the\:first\:matrix\:by\:the\:columns\:of\:the\:second\:matrix}\\\\\begin{pmatrix}3&-5\end{pmatrix}\begin{pmatrix}4\\ -4\end{pmatrix}=3\cdot \:4+\left(-5\right)\left(-4\right)\\\\\begin{pmatrix}3&-5\end{pmatrix}\begin{pmatrix}2\\ 2\end{pmatrix}=3\cdot \:2+\left(-5\right)\cdot \:2\\\\\begin{pmatrix}1&7\end{pmatrix}\begin{pmatrix}4\\ -4\end{pmatrix}=1\cdot \:4+7\left(-4\right)\\\\\begin{pmatrix}1&7\end{pmatrix}\begin{pmatrix}2\\ 2\end{pmatrix}=1\cdot \:2+7\cdot \:2


\begin{pmatrix}3&-5\\ 1&7\end{pmatrix}\begin{pmatrix}4&2\\ -4&2\end{pmatrix}=\begin{pmatrix}3\cdot \:4+\left(-5\right)\left(-4\right)&3\cdot \:2+\left(-5\right)\cdot \:2\\ 1\cdot \:4+7\left(-4\right)&1\cdot \:2+7\cdot \:2\end{pmatrix}


\mathrm{Simplify\:each\:element}\\\\\begin{pmatrix}3&-5\\ 1&7\end{pmatrix}\begin{pmatrix}4&2\\ -4&2\end{pmatrix}=\begin{pmatrix}32&-4\\ -24&16\end{pmatrix}

answered
User Elie
by
8.4k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.