asked 12.6k views
4 votes
Prove that:
(tan20°)^2+(tan40°^)2+(tan80°)^2=33​

asked
User MattC
by
7.7k points

1 Answer

1 vote

Answer:

Explanation:

We have tanπ3=−tan2π3=tan4π3=3–√

Since tan(3x)=3tanx−tan3x1−3tan2x

Thus tanπ/9,−tan2π/9,tan4π/9are solutions to the polynomial 3–√=3x−x31−3x2

On simplication, x3−33–√x2−3x+3–√=0.(1)

Since (tanπ9−tan2π9+tan4π9)2

=tan2π9+tan22π9+tan24π9

+ 2( -tanπ9tan2π9+tanπ8tan4π9−tan2π9tan4π9)

By sum and product pairs of roots in (1) above

(−33–√)2=tan2π9+tan22π9+tan24π9+2×−3

∴tan2π9+tan22π9+tan24π9=33

answered
User FugueWeb
by
7.3k points

Related questions

asked Jun 21, 2022 21.6k views
Obi asked Jun 21, 2022
by Obi
8.0k points
2 answers
6 votes
21.6k views
asked Jul 14, 2020 79.3k views
Don Bright asked Jul 14, 2020
by Don Bright
8.1k points
1 answer
4 votes
79.3k views
asked Feb 3, 2021 137k views
Benjamin Clanet asked Feb 3, 2021
by Benjamin Clanet
8.0k points
2 answers
4 votes
137k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.