asked 96.4k views
1 vote
Mr. Timmons wanted to fence in his rectangular back yard so that his son could play soccer. He bought 180 feet of fencing, which was exactly the length he needed to fence in the whole yard.

If the length of his yard is double the width of the yard, what are the dimensions of Mr. Timmons' yard?


Enter the length first, followed by the width.

asked
User Oto
by
8.9k points

1 Answer

5 votes

Answer:

The length of the yard is 60 feet while the width is 30 feet.

Explanation:

If the length of Mr. Timmon's backyard is double the width, then the dimensions are related by the following expression:

length = 2*width

We also know the perimetter, since he has the exact length of fence to surround his whole yard, which is 180 feet. The perimeter of a rectangle is given by:

perimeter = 2*length + 2*width

Therefore,

180 = 2*length + 2*width

With the length being double the width, we have:

180 = 2*(2*width) + 2*width

180 = 4*width + 2*width

6*width = 180

width = 180/6 = 30

length = 2*width = 2*30 = 60

The length of the yard is 60 feet while the width is 30 feet.

answered
User Renz
by
8.8k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.