Answer:
Check the explanation
Step-by-step explanation:
Yt = Kt + Nt 
 
Taking output per worker, we divide by Nt 
 
Yt/Nt = Kt/Nt + 1 
 
yt = kt + 1 
 
where yt is output per worker and kt is capital per worker. 
 
a) With population being constant, savings rate s and depreciation rate δ. 
 
ΔKt = It - δKt 
 
dividing by Nt, we get 
 
ΔKt/Nt = It/Nt - δKt/Nt ..... [1] 
 
for kt = Kt/Nt, taking derivative 
 
d(kt)/dt = d(Kt/Nt)/dt ... since Nt is a constant, we have 
 
d(kt)/dt = d(Kt/Nt)/dt = (dKt/dt)/Nt = ΔKt/Nt = It/Nt - δKt/Nt = it - δkt 
 
thus, Capital accumulation Δkt = i – δkt 
 
In steady state, Δkt = 0 
 
That is I – δkt = 0 
 
S = I means that I = s.yt 
 
Thus, s.yt – δkt = 0 
 
Then kt* = s/δ(yt) = s(kt+1)/(δ ) 
 
kt*= skt/(δ) + s/(δ) 
 
kt* - skt*/(δ) = s/(δ) 
 
kt*(1- s/(δ) = s/(δ) 
 
kt*((δ - s)/(δ) = s/(δ) 
 
kt*(δ-s)) = s 
 
kt* = s/(δ -s) 
 
capital per worker is given by kt* 
 
b) with population growth rate of n, 
 
d(kt)/dt = d(Kt/Nt)/dt = 
 
= 

 
= 

 
= ΔKt/Nt - n.kt 
 
because (dNt/dt)/Nt = growth rate of population = n and Kt/Nt = kt (capital per worker) 
 
so, d(kt)/dt = ΔKt/Nt - n.kt 
 
Δkt = ΔKt/Nt - n.kt = It/Nt - δKt/Nt - n.kt ......(from [1]) 
 
Δkt = it - δkt - n.kt 
 
at steady state Δkt = it - δkt - n.kt = 0 
 
s.yt - (δ + n)kt = 0........... since it = s.yt 
 
kt* = s.yt/(δ + n) =s(kt+1)/(δ + n) 
 
kt*= skt/(δ + n) + s/(δ + n) 
 
kt* - skt*/(δ + n) = s/(δ + n) 
 
kt*(1- s/(δ + n)) = s/(δ + n) 
 
kt*((δ + n - s)/(δ + n)) = s/(δ + n) 
 
kt*(δ + n -s)) = s 
 
kt* = s/(δ + n -s) 
 
.... is the steady state level of capital per worker with population growth rate of n. 
 
3. a) capital per worker. in steady state Δkt = 0 therefore, growth rate of kt is zero 
 
b) output per worker, yt = kt + 1 
 
g(yt) = g(kt) = 0 
 
since capital per worker is not growing, output per worker also does not grow. 
 
c)capital. 
 
kt* = s/(δ + n -s) 
 
Kt*/Nt = s/(δ + n -s) 
 
Kt* = sNt/(δ + n -s) 
 
taking derivative with respect to t. 
 
d(Kt*)/dt = s/(δ + n -s). dNt/dt 
 
(dNt/dt)/N =n (population growth rate) 
 
so dNt/dt = n.Nt 
 
d(Kt*)/dt = s/(δ + n -s).n.Nt 
 
dividing by Kt* 
 
(d(Kt*)/dt)/Kt* = s/(δ + n -s).n.Nt/Kt* = sn/(δ + n -s). (Nt/Kt) 
 

 
using K/N = k 
 

 
plugging the value of kt* 
 

 
n 
 
thus, Capital K grows at rate n 
 
d) Yt = Kt + Nt 
 
dYt/dt = dKt/dt + dNt/dt = s/(δ + n -s).n.Nt + n.Nt 
 
using d(Kt*)/dt = s/(δ + n -s).n.Nt from previous part and that (dNt/dt)/N =n 
 
dYt/dt = n.Nt(s/(δ + n -s) + 1) = n.Nt(s+ δ + n -s)/(δ + n -s) = n.Nt((δ + n)/(δ + n -s) 
 
dYt/dt = n.Nt((δ + n)/(δ + n -s) 
 
dividing by Yt 
 
g(Yt) = n.(δ + n)/(δ + n -s).Nt/Yt 
 
since Yt/Nt = yt 
 
g(Yt) = n.(δ + n)/(δ + n -s) (1/yt) 
 
at kt* = s/(δ + n -s), yt* = kt* + 1 
 
so yt* = s/(δ + n -s) + 1 = (s + δ + n -s)/(δ + n -s) = (δ + n)/(δ + n -s) 
 
thus, g(Yt) = n.(δ + n)/(δ + n -s) (1/yt) = n.(δ + n)/(δ + n -s) ((δ + n -s)/(δ + n)) = n 
 
therefore, in steady state Yt grows at rate n.