Answer:
x1=c(16.7,17.4,18.4,16.8,18.9,17.1,17.3,18.2,21.3,21.2,20.7,18.5) 
 
x2=c(30,42,47,47,43,41,48,44,43,50,56,60) 
 
y=c(210,110,103,103,91,76,73,70,68,53,45,31) 
 
mod=lm(y~x1+x2) 
 
summary(mod) 
 
R output: Call: 
 
lm(formula = y ~ x1 + x2) 
 
Residuals: 
 Min 1Q Median 3Q Max 
 
-41.730 -12.174 0.791 12.374 40.093 
 
Coefficients: 
 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 415.113 82.517 5.031 0.000709 *** 
x1 -6.593 4.859 -1.357 0.207913 
x2 -4.504 1.071 -4.204 0.002292 ** 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 24.45 on 9 degrees of freedom 
Multiple R-squared: 0.768, Adjusted R-squared: 0.7164 
F-statistic: 14.9 on 2 and 9 DF, p-value: 0.001395 
 
a). y=415.113 +(-6.593)x1 +(-4.504)x2 
 
b). s=24.45 
 
c). y =415.113 +(-6.593)*21.3 +(-4.504)*43 =81.0101 
 
residual =68-81.0101 = -13.0101 
 
d). F=14.9 
 
P=0.0014 
 
There is convincing evidence at least one of the explanatory variables is significant predictor of the response. 
 
e). newdata=data.frame(x1=21.3, x2=43) 
 
# confidence interval 
 
predict(mod, newdata, interval="confidence") 
 
#prediction interval 
 
predict(mod, newdata, interval="predict") 
 
confidence interval 
 
> predict(mod, newdata, interval="confidence",level=.95) 
 
 fit lwr upr 
 
1 81.03364 43.52379 118.5435 
 
95% CI = (43.52, 118.54) 
 
f). #prediction interval 
 
> predict(mod, newdata, interval="predict",level=.95) 
 
 fit lwr upr 
 
1 81.03364 14.19586 147.8714 
 
95% PI=(14.20, 147.87) 
 
g). No, there is not evidence this factor is significant. It should be dropped from the model.